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An Integrated Preventive Operation Framework for
Power Systems During Hurricanes

Yuanrui Sang

Abstract—Severe weather is the primary cause of power outages
in the U.S. Despite the availability of weather forecast information,
such data are not systematically integrated into operation models.
This article proposes an integrated framework to convert weather
forecast into appropriate information for preventive operation dur-
ing hurricanes so that the power outages induced by hurricanes
can be reduced. To achieve this goal, first, a structural model of
the transmission towers is developed to estimate failure probabil-
ities based on the wind speed. These probabilities are then inte-
grated within a day-ahead security-constrained unit commitment
framework to guide preventive operation. The resulting day-ahead
schedule will be more reliable as it will rely less on the elements that
are likely to fail. Simulation studies, conducted on the IEEE 118-
bus system affected by synthesized Irma and Harvey hurricanes,
showed that the proposed framework was able to prevent 33% to
83% of the blackouts. Further research is required to investigate
the impacts of flooding, damage to the distribution network, and
weather forecast uncertainty.

Index Terms—Dynamic structural modeling, extreme events,
hurricane, power outage, power system reliability, power
system resilience, preventive operation, stochastic optimization,
transmission outage.

NOMENCLATURE
A. Structural Model
Indices
[ Coefficient compared with limit state.
k Transmission line.
i,] Location indices of the transmission tower.
m Indices of tower locations in the transmission line.
Variables
Fr(V) Structural wind fragility at wind speed V.
Fu(t) Wind load at time ¢.
V Mean wind speed.
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V(t) Wind time history.

Vy(rg) Gradient wind speed at a radial distance of r, from
hurricane center.

V(z) Mean wind speed at height z;.

Ty Radial distance from hurricane center.

Fr(V) Tower failure probability under wind speed V.

Vin Mean wind speed at the mth tower location.

P, Damage and failure probability.

P[FL,k] Failure probability of transmission line k.

P[SL,k] Survival probability of transmission line k.

Parameters

A, B Scaling factors for horizontal wind profile.

Ap Projected area.

Cq Drag coefficient.

fe Coriolis parameter.

Pn Ambient pressure.

De Central pressure.

Vio Mean wind speed at height 10 m.

Vv Mean wind speed.

Vio 10-min mean wind speed at the height of 10 m.

z Height of mean wind speed.

Z10 Height constant of 10 m.

o} Ground roughness.

P Air density.

NT Number of towers in one transmission line.

B. Preventive Operation Model

Indices

k Transmission line.

g Generator.

n Node.

S Scenario.

seg Segment of linearized generator cost function.

Sets

ot (n) Transmission lines with their “to” bus connected to
node n.

o (n) Transmission lines with their “from” bus connected
to node n.

g(n) Generators connected to node n.

Variables

Fist Real power flow through transmission line k& in
scenario s at time .

ﬁ,s,t Load loss at node n in scenario s at time .
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Pyst Real power generation of generator g in scenario s
at time ¢.

PgO’SJ Overgeneration of generator ¢ in scenario s at time
t.

o Real power generation of generator g in scenarios

in segment seg at time ¢.

Ug,t Unit commitment (1: generator g is on at time ¢; 0:
generator g is off at time ?).

Vgt Startup variable (1: generator g starts up at time ¢;
0: generator g does not start up at time ).

Wyt Shutdown variable (1: generator g shuts down at
time ¢; 0: generator g does not shut down at time ).

O st Voltage angle at bus n in scenario s at time ¢.

Ofr ks,  Voltage angle at the “from” node of line % in sce-
nario s at time ¢.

Oto ke, Voltage angle at the “to” node of line k in scenario
s at time .

Parameters

by, Susceptance of transmission line k.

gi‘;zr Linear cost of generator g in segment seg.

et Cost of load loss ($/MWh).

cyL No-load cost of generator g.

c© Cost of over generation ($/MWh).

SP Shutdown cost of generator g.

cgU Startup cost of generator g.

Fynax Thermal/stability limit of transmission line .

Ly st Load at bus n in scenario s at time ¢.

Ny Number of buses in s system.

N, Total number of generators.

N Number of scenarios.

Ngeg Number of segments for the linearized generator

cost function.
D Probability of line k to fail at time .
Ds Probability of scenario s.

P Upper generation limit of generator g.

P;‘i“ Lower generation limit of generator g.

preemax Upper generation limit of generator g in segment
seg.

RR, Hourly ramp-rate for generator g.

ty The time that hurricane starts.

tr The time that line & fails.

T Length of the investigated time period.

Tr Number of periods with different probabilities of
transmission line failure.

ngo“’“ Minimum downtime for generator g.

,”® Minimum uptime for generator g.

Zl,s,t Transmission line k’s status at time ¢ in scenario s
(1: line is closed; O: line is open).

A Maximum value of bus voltage angle difference to
maintain stability for line k.

Apmin Minimum value of bus voltage angle difference to

maintain stability for line k.

I. INTRODUCTION

CCORDING to a report by the Department of Energy,
severe weather is the leading cause of power outages in
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the U.S. [1]. Another report by six national laboratories warns
that the frequency and intensity of weather-related hazards will
continue to increase due to climate change [2]. The report also
identifies four categories of resilience enhancement responses,
which include robustness, resourcefulness, rapid recovery, and
adaptability [2]. Hurricanes and tropical storms are one main cat-
egory of extreme weather events that lead to large blackouts, both
in terms of lost electric load and number of affected customers.
The 2017 hurricane season clearly revealed the vulnerability of
the U.S. electric power grid to the hurricanes. The impact of
three major hurricanes that occurred in 2017 is summarized in
Table I [3]—[8]. In August 2017, hurricane Harvey caused about
300 000 customer outages in Texas [4]. About two weeks later,
in September, hurricane Irma led to the outage of more than six
million customers in Florida (59% of total FL customers) [5]
and just below a million customers in Georgia (22% of total
GA customers) [6]. Later in September, Hurricane Maria made
a devastating landfall in Puerto Rico, which left the entire island
in complete darkness [7]. As of the end of 2017, more than three
months after the hurricane’s landfall, still, about 30% of the load
was not recovered. Clearly, the existing reliability practices are
inadequate during hurricanes.

Power system reliability is often achieved through the im-
plementation of various redundancies so that the system with-
stands likely disturbances [9]-[11]. Reliability standards set by
the North American Electric Reliability Corporation (NERC)
require the operators to prevent blackouts under the random
outage of one (N-1) or two (N-1-1) bulk power elements [12],
[13]. Hurricanes, however, usually lead to an outage of multiple
elements, well beyond the conditions of NERC standards. For
example, Electric Reliability Council of Texas experienced 97
transmission line outages (139 kV and above) after hurricane
Harvey made landfall [14]; similarly, hurricane Sandy caused
the outage of over 218 high-voltage (115 kV and above) trans-
mission lines [15]. Clearly, the conventional reliability tools,
which the industry makes use of, are neither designed for nor
applicable to such extreme conditions.

For the case of hurricanes, rich meteorological information,
such as wind direction and speed, is forecasted and available to
power system operators [15], [16]. Some system operators even
have access to meteorologists onsite [15]. However, the weather
information is often not converted to appropriate inputs for sys-
tematic use in preventive operation. The conservative changes to
the operation procedures, during severe weather, is heavily based
onengineering judgment and operators’ knowledge. Thus, many
effective but unknown preventive actions are missed, increasing
the size of power outages.

A. Academic Literature

There is a vast body of academic literature that aims to
estimate the power outage statistics (e.g., number of customers
without power, etc.) with the weather forecast data before the
hurricane [17]-[24]. Such statistical models, though may pro-
duce high-quality results, are only able to provide macroscale
statistics about the outage, without any details on the element-
level failures. There also exists a number of studies on sys-
tem hardening and maintenance strategies considering weather
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TABLE I
INFORMATION SUMMARY OF THREE MAJOR HURRICANES IN 2017

g:rr:l?ane gri;andfall {;ir;(:if;lll Customers affected Transmission lines affected Generators affected

Harvey 08/26/2017 Texas 0.3 million 339 1108 MW wind power taken
Irma 09/10/2017 Florida 7 million 118 2 nuclear stations shutdown
Maria 09/20/2017 Puerto Rico 1.6 million (almost all NERC report not available yet NERC report not available yet

customers in Puerto Rico)

conditions [25], [26] and optimizing the repair and restoration
plan after the hurricane [27]-[32]. However, the literature on pre-
ventive operation during the hurricane, using weather forecast
information, is almost nonexistent. Although there exists work
on identifying power system vulnerability considering different
contingencies [33], the knowledge of system vulnerability is not
used in performing preventive operations. The only published
research in the preventive operation domain that we are aware
of includes [34], [35], and the authors’ own study [36]—[38]. All
these papers show promising prospect for preventive operation;
however, they do not properly model the weather data, estimate
the damage to power system components through dynamic struc-
tural analysis, and integrate the predicted damage information
in day-ahead operation. A Sandia National Laboratory report
[39], [40] briefly presents a method for modeling high-impact
low-frequency events, which includes system fragility analysis,
scenario generation, and system recovery. However, the report
does not include mathematical models for system fragility and
scenario generation and does not study the impacts of preven-
tive operation. This article is the first to develop an integrated
framework to study the effectiveness of preventive day-ahead
operation during hurricanes, with detailed mathematical models
for system fragility analysis, scenario generation, and power
system preventive operation.

B. Industry Practices

Although the NERC reliability standards do not apply to
the case of hurricanes, the utilities, as well as the state and
federal governments, have taken steps to improve the resilience
of the grid, under extreme weather conditions. The National
Electrical Safety Code includes requirements for transmission
and distribution lines of a certain height to be able to withstand
strong winds, which is defined based on the region [41]. For
instance, the T&D equipment in the coastal areas of Texas and
Florida should withstand wind speeds of up to 130 mi/h [41].
It should be noted that the wind gust for both Harvey and Irma
exceeded this threshold. Moreover, older transmission towers
and distribution poles do not necessarily meet these standards.

The utility efforts can be divided into three categories: dura-
bility, resilience, and restoration [42]. Durability involves hard-
ening efforts that would strengthen the system in the face of
extreme conditions; resilience would enable the delivery of
electricity despite some damage; and restoration reduces the
outage time.

A number of utilities have made significant investments in
hardening their T&D infrastructure. For example, Florida Power
and Light (FPL) has spent $3 billion in undergrounding power

Before During After

Hurricane Hurricane Hurricane

System hardening  Preventive operation Restoration time
Fig. 1. Time window for the preventive operation model, developed in this

article, compared to system hardening and restoration.

lines, clearing vegetation in transmission corridors, strength-
ening power lines, inspecting poles, and replacing those that
did not meet the standards [43]. Such efforts showed to be
effective during Irma. Postmortem analysis of Maria has also led
to suggestions on how to rebuild a more resilient system [44],
[45]. FPL also invested significantly in smart grid technologies
to monitor and automate the system [46]; however, an integrated
framework that converts weather data into practical information
for preventive operation is still needed.

The utilities have also made progress in their restoration
planning. Prepositioning of restoration crew and equipment, as
well as seeking help from out of state utility and contractor
workers are examples of such improvements [43], [47].

Despite the significant progress in system hardening and
restoration, automated tools to improve the system resilience
during a storm are nonexistent. Existing proactive actions are
usually identified and executed based on engineering judgment.
For instance, the utilities de-energized a number of substations in
the New York City during Superstorm Sandy to prevent damage
to their equipment [48]. These actions led to transmission over-
loads that resulted in additional power outages [48]. An NERC
report lists the actions that were taken during hurricane Irma,
which included increasing the staff, postponing scheduled out-
ages for maintenance, and prestaging repair crew and equipment
[8]. Lack of automated operator advisory tools, which motivates
the this article, is apparent.

C. Scope of Contributions of This Article

This article investigates the potential benefits as well as the
design principles of an operator advisory tool during hurricanes.
The tool provides system operators with preventive actions with
the goal of reducing power outages. This tool is designed during
for the short-time window, covering a few days prior to hurricane
landfall until the point when the storm is weakened and not
of concern anymore. Therefore, the proposed model offers a
fundamentally different functionality compared with system
hardening or restoration efforts, as shown in Fig. 1.

As a first step, this article focuses on testing the viability of
this framework. To enable the analysis, a number of simplifying
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assumptions are made. The promising results presented later in
this article suggest that the proposed framework has the potential
of delivering sizeable reliability improvements. Further research
is required to better understand the performance of the proposed
framework under a more realistic set of assumptions. The main
simplifying assumptions are briefly discussed ahead.

First, this article exclusively focuses on transmission-level
component damages. Historic data verify that generators are
usually not prone to damage by hurricanes, as they are protected
in an indoor environment with strong structural support [49].
The exception to this is flooding, which may cause generation
outage. This article at hand, however, focuses on extreme wind
impacts rather than modeling the impacts of other types of
extreme weather, such as flooding. Therefore, in the analysis
offered in this article, direct generator outage is not considered.
However, the proposed framework can be seamlessly extended
to allow for modeling of generation outages by adding additional
scenarios. In addition to direct outage of generation, loss of
transmission lines may lead to disconnected generators. In such
cases, the power produced by the disconnected generator will
not be deliverable to the load. This type of generator outage is
considered in this article and modeled through overgeneration
variables, which similar to the lost load, is penalized with a
high penalty factor in the objective function. The same report
confirms that hurricanes cause significant damage to T&D sys-
tems [49]. Due to the radial arrangement of the distribution
network, there is very little room for preventive operation at the
distribution level. Thus, we acknowledge the vulnerability of the
distribution network to severe weather, but choose to overlook it
in this article. To further justify this assumption, it is important
to note that power outages caused by distribution-level damages
are local. However, transmission-level failures can lead to power
outages far outside the area directly affected by the hurricane,
where the distribution network is not affected. Such outages are
likely avoidable through the model developed in this article.

Second, this article exclusively focuses on the wind feature of
the hurricanes, ignoring other factors such as flooding. Again,
we acknowledge that flooding may damage the power system
components. However, the majority of the failures during a
hurricane is caused by its strong winds. Third, in the structural
modeling, only the structural buckling and collapse of the trans-
mission tower is considered, which can be further expanded to
including conductor breaking, transmission wire damage, and
even debris impact. Lastly, the weather forecast information
includes inherent uncertainties [50]; however, to simplify the
study, this article assumes that the weather forecast is exact.

The preventive operation framework proposed in this article
includes three modules, as shown in Fig. 2. First, weather
forecast information is employed to estimate the damages to
transmission system components. To do so, a structural model
is developed, which analyzes the failure of transmission towers,
due to the dynamic wind loading. The model estimates the
likelihood of transmission line failure as a function of wind
speed. Second, contingency scenarios are generated considering
the combinations of component failures at different times. At
last, the contingency scenarios are adopted in the stochastic
day-ahead security-constrained unit commitment (SCUC). Load
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System component fragility analysis based on
weather forecast

System contingency scenario generation

Power system preventive operation

Fig. 2. Illustration of the preventive operation framework.

shedding and overgeneration are penalized with high penalty
factors in the SCUC formulation. Thus, the electric load will
only be shed if the damaged network cannot support the delivery
of energy to a location, or if such delivery is extremely costly.
The mathematical representation of this problem is a stochas-
tic mixed-integer linear program. To reduce the computational
burden of the problem, a simple scenario reduction technique is
used. The schedule, obtained by this framework, will rely less
on the transmission elements that are prone to failure due to the
hurricane. Thus, the system reliability will be enhanced and the
power outage will be reduced.

The proposed preventive operation model is based on dc
power flow, since currently all the power system operators
in the U.S. use dc-power-flow-based optimization models for
operation. The model enforces a number of hard constraints,
including the transmission line thermal limits, which ensure that
no transmission line is overloaded under any scenario. Voltage
stability is beyond the scope of this study and will be addressed
in future work.

The simulation results, presented in this article, suggest that
appropriate integration of weather data in power system opera-
tion will significantly reduce power outages during hurricanes.
This reduction in our simulation studies, for the IEEE 118-bus
system under synthesized Irma and Harvey hurricane scenarios,
was between 33% and 83%, which is rather encouraging.

The rest of this article is organized as follows. Section II
presents the transmission tower structural model and its stability
under dynamic wind loading. Section III describes the genera-
tion of contingency scenarios, using the failure probabilities,
estimated through the structural model. Section IV develops
the preventive SCUC model using the stochastic optimization.
Case studies are presented and discussed in Section V. A brief
discussion of the computational complexity of the model is
presented in Section VI and, finally, Section VII concludes this
article.

II. TRANSMISSION TOWER DYNAMIC RESPONSE
UNDER WIND LOADING

This section briefly explains the derivation of a finite-element
model of transmission towers to enable fragility analysis. All
the towers are assumed to follow a generic design [51], which is
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Fig. 3.  Finite-element model and a simplified model of transmission towers.

another simplifying assumption, with a height of 55 m, steel-
made members, and L-shaped cross sections. A finite-element
model of this tower is built in ANSYS. To reduce the computa-
tional time, the tower model is further reduced into a 13-degree-
of-freedom-lumped mass model, as shown in Fig. 3.

Dynamic wind loading characteristics are composed of steady
and fluctuating wind components [52]. For mean wind compo-
nent, the changes over height are described by the power-law
[53], as shown in (1). For most transmission towers that are
built in the open plain, a equals 0.16

1% z \“
— = (=) . 1
Vio (210> M

Fluctuating wind speed is simulated through the weighted am-
plitude wave superposition method. According to the wind speed
record, fluctuating wind speed can be expressed as a Gaussian
stationary random process [54]. Fluctuating wind component is
simulated using the developed model. There are 13 wind speeds
at different heights based on the division of the transmission
tower. The fluctuating wind speed at the top of the tower is
shown in Fig. 4 (top); this wind speed is then compared with the
desired power spectrum, as shown in Fig. 4 (bottom).

Dynamic wind loading is derived from wind time history and
projected area [55], shown as follows:

Fy(t) = 0.5pV (t)*CaAp 2

where air density p is chosen as 1.195 kg/m3. V (t) is the wind
time history, which is the sum of the mean wind and fluctuating
wind components. Drag coefficient C; is usually determined
by the wind tunnel test [55]. In this article, we assume that all
wind loads are added on the transmission tower perpendicularly.
Thus, we choose the drag coefficient based on the literature
with similar transmission tower shape and height [55], [56].
By adding wind load on the finite-element model and simplified
lumped mass model, the top tip displacement of the transmission
tower is demonstrated in Fig. 5.
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Fig. 4. Wind time history and validation. Top: wind speed at the tower tip.

Bottom: comparison between simulated and theoretical value.
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Fig.5. Comparison of the top displacement between finite element and lumped
mass models.

A. Transmission Tower Fragility Under Extreme Wind

A fragility curve describes the likelihood of damage and
failure of a structure under different loading intensities, such
as earthquake ground motion [57] or wind speed. In structural
wind fragility, the damage and failure probability Fr(V') under
a given wind speed V' can be calculated as

Fr(V)=P[l >1LS/Viy=V]. 3)

The damage condition is defined as the structure performance
exceeding a limit state (LS). In this article, the limit states
are determined as transmission tower’s top displacement over
tower height at 1.5%, 2%, 2.5%, and 3%. Different fragility
curves under different limit states are demonstrated in Fig. 6.
The marked points are the probability of damage or failure of the
individual tower under different wind speeds. The solid curve is
the fitted normal cumulative distribution function. In this article,
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Fig. 6. Wind fragility curve of a transmission tower.

the failure condition of all transmission towers is determined at
a displacement of over 2.5%.

B. Transmission System Fragility Under Extreme Wind

In order to estimate the performance of the transmission
system in the hurricane region, two steps of calculation are
involved. First, a horizontal wind profile is required to model the
wind speed distribution in the region, affected by the hurricane.
The horizontal wind profile can be expressed via [58]

1/2
—7rgfe/2
4

where V() is the gradient wind speed as a function of radial
distance r, from the center of the hurricane. Wind speed in-
creases linearly within the 100-km range of the hurricane center;
outside that range, wind speed shows a parabolic attenuation.

The second step requires the calculation of each transmission
line’s failure probability based on the mth individual transmis-
sion tower’s failure probability P, = Fr ,,,(V;,). We denote
the kth transmission line’s failure probability by P[F'L, k], and
its survival probability by P[SL,k]. For a transmission line
to survive a wind load, all of its towers must survive. Thus,
P[FL, k] can be calculated as

AB(pup)ep () r,2p

V!] (Tg): or B 4
g

NT
PIFLk|=1-P[SLkl =1~ [] From (Va)- (5
m=1
According to the horizontal wind profile and hurricane move-
ment track, wind speed at each tower location at each time
interval can be estimated, which is, then, used to calculate the
failure probability of the line.

III. TRANSMISSION OUTAGE SCENARIO GENERATION

Based on the likelihood of each transmission failure, con-
tingency scenarios can be generated and their probabilities are

IEEE SYSTEMS JOURNAL

Line 1

Line 2
Line 3

Line N

Fig. 7. Illustration of the scenario generation procedure.

also calculated. Since different lines may fail at different times
during the hurricane, each scenario should indicate the lines that
fail and the time when each of those lines goes out of service.
The scenario generation procedure is illustrated in Fig. 7.

According to Fig. 7, each scenario can be uniquely identified
by a vector with Ny, components, each of which indicating the
time of failure for a particular line. If a line remains in service in
a given scenario, the respective value for the line in the scenario
vector should be greater than the time range of the study, i.e.,
to + 1T + 1, which means that the line does not fail within the
duration of the SCUC. The total number of scenarios can, thus,
calculated as

N, = (Tp + 1), (6)

Given that transmission line k fails at ¢;, in scenario s, the
probability for each scenario is calculated as

Ny, tr—1
ps=]] (pk,tk II @ —pk,t)) 7

k=1 t=ty

Equation (6) clearly shows how the number of scenarios
can grow very quickly as the number of lines that are affected
increases. The size of the scenario set greatly impacts the com-
putational time, required for solving the optimization problem.
Thus, it is essential to reduce the scenario size to an acceptable
level. In this article, we use a very simple method and filter out
the scenarios that have a probability below a cutoff level.

IV. PREVENTIVE STOCHASTIC OPTIMIZATION MODEL

The proposed preventive stochastic optimization model is
based on a dc SCUC formulation where transmission outage
scenarios, caused by the hurricane, are explicitly modeled. The
problem identifies a single unit commitment solution for all the
scenarios while allowing generation dispatch to vary for each
scenario, within the ramping limits. Both overgeneration and
load shedding are allowed under the scenarios but penalized
with a high penalty price in the objective function.

The objective function is expressed in (8), which minimizes
the expected dispatch cost of the system considering generation
dispatch, overgeneration, and load shedding under all scenarios.
Generation limits are expressed in (9)—(11); generation costs are
calculated using a piecewise linear cost function. DC power flow
constraints are expressed in (12) and (13); when a transmission
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line is out of service, both its susceptance and capacity limit are
set to 0 using the binary integer parameter zj, ;. Equation (14)
sets the voltage angle of the reference bus to 0. Equation (15) is
the nodal power balance constraint in which overgeneration and
load shedding are included. Equations (16) and (17) calculate
the start-up and shut-down variables; eq. (18) is the hourly
ramping limit for each generator; eqgs. (19) and (20) are the
minimum up and downtime constraints for each generator. Since
the contingencies are explicitly modeled, reserve requirements
are omitted

Nse inear pS
Ny Zseg:gl clg,szz P;?§t+céVLu9,t
oL U P SU SD 0 pO
min Z;ps ; 7\ + ¢ “g7tN‘|b’cg Wg,t TPyl
=
—+ Z CLLﬁ,s,t
n=l1
)
Nscg
Pysi= Y, Pyey ©)
seg=1

0 < P, < P (10
Ug PP < Py gy < ug P (11)
- Zk,s,tF];naX S Fk,s,t < Zk,s,tF]?laX (12)
Zk,s,tbk (efr,k,s,t - eto,k,&,t) = Fk:,s,t (13)
01,560 =0 (14)

Z Fk,s,t - Z Fk,s,t + Z Pg,s,t
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V. SIMULATION STUDIES

This section studies the effectiveness of the developed model
through simulation on the IEEE 118-bus system [59]. To provide
a better understanding, two separate cases are built, where the
hurricanes affect different parts of the system. First, we mapped
the IEEE 118-bus system to the transmission network in Texas.
The first case includes 13 buses from IEEE 118-bus and 19
transmission lines as shown in Fig. 8 (left), denoted as layout I.
The second case includes 20 buses and 23 lines as shown in Fig. 8

Transmission Line

L | 5. 30 ® Bus
Tayout 1780,

7 Layout 2

Fig.8. Two mappings of the IEEE 118-bus system on Texas transmission grid.
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Fig. 9. Peak wind speed of hurricanes Harvey and Irma for 24 h.

(right), denoted as layout II. Two hurricane scenarios were also
generated, synthesizing Hurricanes Harvey and Irma. In both
scenarios, the maximum sustained wind speed is extracted from
the National Hurricane Center database [60]. Fig. 9 (top) shows
hurricane Harvey’s peak wind speed from 4 A.M. August 26th to
4 A.M. August 27th and Fig. 9 (bottom) shows hurricane Irma’s
peak wind speed from 5 P.M. September 9th to 5 P.M. September
10th. According to Section II, horizontal wind speed profile can
be approximated, as shown in Fig. 10.

A. Transmission System Fragility Analysis

According to the transmission system analysis procedure,
described in Section II, failure probabilities of the transmission
lines under synthesized hurricanes Harvey and Irma can be esti-
mated. The accumulated probabilities at different time intervals
are provided in Tables II-IV.

B. Transmission Outage Scenarios

Using the information provided in Tables II-1V, all the pos-
sible transmission outage scenarios were generated for the four
cases (two hurricanes passing through two different parts of the
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TRANSMISSION LINE FAILURE PROBABILITIES UNDER HARVEY

TABLE II

1000

Harvey 1 Harvey 11
Line number 4AM 7AM —4AM _|Line number 4AM 7AM-4AM
69-70 0 0 10-9 095 0.95
69-75 0 0 9-8 0.96 0.96
69-77 0 0 8-30 049 0.49
78-77 0 0 30-17 0.74 0.74
82-77 0 0 17-18 0.96 0.96
82-96 0 0 17-113 0.55 0.55
82-83 0 0 113-32 0 0
85-83 0 0 32-31 0.96 0.96
84-83 0 0 29-31 0.99 0.99
77-80 0.63 0.63 28-29 0.99 0.99
97-80 0.83 0.83 27-28 0.99 0.99
98-80 0.96 0.96 27-115 0.99 0.99
99-80 0.99 0.99 114-115 0.99 0.99
80-79 0.96 0.96 114-32 098 0.98
80-81 0.99 0.99 27-32 0.99 0.99
65-68 095 0.95 27-25 1 1
68-116 0.99 0.99 26-25 0.60 0.60
66-65 0.16 0.15 23-25 042 042
69-68 093 093 23-32 0.14 0.14
23-22 0.88 0.88
21-22 094 094
20-21 0.89 0.89
26-30 0.51 0.51
TABLE III

TRANSMISSION LINE FAILURE PROBABILITIES UNDER IRMA |

Line number SPM 8PM 11PM 2AM 5AM 8AM -5SPM

69-70
69-75
69-77
78-77
82-77
82-96
82-83
85-83
84-83
77-80
97-80
98-80
99-80
80-79
80-81
65-68

0 0
0 0
0.01 0.86
0 0.42
0 0.65
0 0.01
0 0.20
0 0.01
0.09 0.55
1 1
1 1
| 1
1 1
1 1
| 1
1 1
1 1
0.78 1
1 1

0
0.33
1
1
1
0.98
1
091
1

— e = e e e e

0.99
1

e e e e e e b e b e e b e

1

e e e e e b e b e b e e

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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TABLE IV
TRANSMISSION LINE FAILURE PROBABILITIES UNDER IRMA II

Line 5PM 8 PM and | Line 5PM 8 PM and
number later number later
10-9 1 1 114-115 1 1
9-8 1 1 114-32 1 1
8-30 1 1 27-32 1 1
30-17 1 1 27-25 1 1
17-18 1 1 26-25 1 1
17-113 1 1 23-25 1 1
113-32 0.11 1 23-32 1 1
32-31 1 1 23-22 1 1
29-31 1 1 21-22 1 1
28-29 1 1 20-21 1 1
27-28 1 1 26-30 1 1
27-115 1 1

TABLE V

NUMBER OF SCENARIOS CONSIDERED IN EACH CASE

Hurricane cases Harvey I  Harvey II Irmal  Irma II
Number of scenarios 40 157 134 2

system). Each scenario is a vector, including information about
the status of all the transmission lines at each hour in the studied
period. In order to reduce the computational burden, scenarios
with a probability of less than 0.1% were eliminated. The proba-
bilities of the remaining scenarios were adjusted proportionally
so that they sum up to 1. The number of simulated scenarios for
each case is shown in Table V.

C. Preventive Operation

Hurricane Harvey made landfall around 4:00 A.M., and it was
able to cause transmission line failures only in the first three
hours, so the uncertainty of transmission line failures caused by
this hurricane exists only on the day that the hurricane made
its landfall. However, for the case of hurricane Irma, it made its
landfall around 5:00 P.M., and was able to cause transmission line
failures over the next 15 hours. Thus, the uncertainty of damage
lasts into two days. In order to study the impact of the two
hurricanes in a sufficiently long period, while considering the
industrial practices for operating a day-ahead market, the impact
of hurricane Harvey was studied in a 24-h SCUC model, whereas
that of the hurricane Irma was studied in a 48-h SCUC model.
The simulations were carried out in the following manner.

1) Two deterministic SCUC models, without considering the
outage scenarios, were carried out as base cases according
to the base case formulation presented in [61], one over
24 h and the other over 48 h.

2) The unit commitment results were obtained from the two
base cases and fixed in the stochastic model to calculate
the expected load shedding and over-generation under
the hurricane scenarios with business as usual (BAU)
operation.

3) The SCUC was optimized using the stochastic model, in
order to evaluate the impact of the hurricanes with the
preventive SCUC model. Steps 2) and 3) were carried out
for the four cases listed in Table V.
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TABLE VI
EXPECTED COST COMPARISON ($M)

TABLE VIII
SOLUTION TIME OF THE FOUR CASES

Hurricane BAU w/ Preventive BAU w/o Preventive
Base case . model w/ . model w/o
case penalties . penalties .
penalties penalties
Harvey I 1.14 57.09 33.97 1.01 1.11
Harvey II (1 day) 16048  32.96 1.15 1.72
Irma I 2.28 154.49 105.49 2.00 2.33
Irmall  (2days) 38835  66.83 2.17 3.10
TABLE VII
EXPECTED LOST LOAD AND OVERGENERATION
Hurricane BAU Preventive operation
Expected Expected over- | Expected Expected over-
case : .
lost load generation lost load generation
Harvey I 6.23% 0.00% 3.65% 0.00%
Harvey II 12.91% 4.79% 3.46% 0.01%
Irma I 8.47% 0.00% 5.73% 0.00%
Irma II 15.25% 6.20% 3.54% 0.00%

As both load shedding and overgeneration are undesirable,
they were penalized with a penalty factor of $10 000/MWh in
the stochastic model. The SCUC was formulated and coded in
Java using the CPLEX Java API and solved using the CPLEX
MILP solver.

The expected dispatch costs were obtained for the four cases
under both BAU and the proposed preventive model and com-
pared with the base cases in Table VI. The results are presented
both including and excluding the penalties for overgeneration
and load shedding. As the penalty price is very large, the cost
is dominated by its penalty component, when penalties are
included. In such cases, the preventive model shows an obvious
advantage in terms of achieving a lower cost solution, as it effec-
tively reduces overgeneration and load shedding. It is difficult to
compare the costs when penalties are excluded because the cost
will generally decrease as more load is shed. Thus, comparison
purely based on cost is not very meaningful here. However, in
three out of four cases, the stochastic preventive model converges
to a higher cost solution both compared with the base case and
BAU. The largest increase from the base case is for Harvey II,
where the preventive model adds 51% to the cost. However,
the additional cost will help significantly enhance the system
reliability, as will be discussed later in Table VII.

The expected load shedding and overgeneration from the four
cases, under BAU and preventive operation, were calculated as
a percentage of the overall demand during the studied period
and presented in Table VIL. In all cases, the preventive model
was able to reduce the violations anywhere between 33% and
83%. As the damages for layout II was especially significant,
with the BAU model, not only did the load shedding double, but
also there was a 4%—7% of overgeneration, which caused much
larger penalty costs compared with layout I. Using the preven-
tive SCUC model, overgeneration was practically eliminated,
and the expected load shedding was reduced to much lower
levels, even for the case of Irma II, with a stronger hurricane
and a more vulnerable layout. Thus, the mediocre increase in

Irma IT
0.31

Irma |
2889.28

Hurricane case
Solution time (min)

Harvey |
46.63

Harvey II
494.51

costs, presented in Table VI, is essentially the cost of relia-
bility enhancement, which was rather significant, as shown in
Table VII.

VI. COMPUTATIONAL COMPLEXITY

The optimization problem, developed in this article, is a
stochastic mixed-integer linear program. Solution time in this
class of problems is heavily influenced by the number of integer
variables and scenarios. The solution times for the four cases,
presented in this article, are shown in Table VIII. For instance,
Harvey Il and Irma I had a similar number of scenarios, but Irma I
was solved over 48 h, whereas Harvey II was solved over 24 h.
Thus, Irma I involved a larger number of variables, especially
binary commitment variables. This made the solution time for
Irma I significantly longer than Harvey II. Harvey I and Irma II
had relatively small numbers of scenarios, and both of them were
solved in a relatively short period of time.

It should be noted that the solution time can be substantially
longer for larger systems. Solving unit commitment problem for
a large-scale power system in and of itself is a computationally
challenging problem, let alone considering all the possibilities
related to hurricane impacts. In industry implementations of
unit commitment, a variety of simplifications and modeling
techniques are used to achieve tractability. These include the
adoption of sensitivity factors, iterative selection of binding
constraints, as well as effective selection and reduction of the
scenarios. In addition, large systems can be divided into a
number of zones, and the problem can be solved in multiple
stages. The purpose of this article, however, is to introduce the
integrated framework, its components, and the effectiveness of
the proposed methodology. Detailed investigation of tractability
issues will require further research and will be discussed in our
future work.

VII. CONCLUSION

This article, for the first time, develops an integrated frame-
work where weather forecast information is effectively incorpo-
rated in power system operation. First, a finite-element structural
model of transmission towers is developed. The model takes
weather data as an input and calculates the failure probability
of the transmission lines. These probabilities are then explicitly
included within a day-ahead unit commitment model. Thus, the
integrated framework is able to guide effective preventive opera-
tion under extreme weather conditions. The proposed framework
was validated against business as usual operation under Hurri-
canes Irma and Harvey, synthesized for IEEE 118-bus system. To
explore the feasibility and effectiveness of preventive operation,
incorporating weather information, the simulation studies as-
sumed that the weather forecast is exact. The results suggest that
the proposed integrated framework is able to drastically reduce
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power outages (33%—-83%), during hurricanes by moderately
increasing the operation cost (up to 51%). Further research
is required for improving the computational efficiency of the
developed model and testing on real-world large-scale systems.
Future research will also study the impacts of weather forecast
uncertainty on the effectiveness of preventive operations.
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